首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1605篇
  免费   135篇
  国内免费   28篇
电工技术   80篇
综合类   43篇
化学工业   364篇
金属工艺   77篇
机械仪表   73篇
建筑科学   60篇
矿业工程   13篇
能源动力   84篇
轻工业   195篇
水利工程   2篇
石油天然气   8篇
武器工业   5篇
无线电   163篇
一般工业技术   203篇
冶金工业   11篇
原子能技术   8篇
自动化技术   379篇
  2023年   71篇
  2022年   94篇
  2021年   75篇
  2020年   123篇
  2019年   40篇
  2018年   29篇
  2017年   67篇
  2016年   71篇
  2015年   137篇
  2014年   150篇
  2013年   211篇
  2012年   292篇
  2011年   81篇
  2010年   62篇
  2009年   45篇
  2008年   33篇
  2007年   47篇
  2006年   37篇
  2005年   22篇
  2004年   9篇
  2003年   9篇
  2002年   16篇
  2001年   13篇
  2000年   10篇
  1999年   16篇
  1998年   6篇
  1996年   2篇
排序方式: 共有1768条查询结果,搜索用时 141 毫秒
1.
Ceramic design based on reducing friction and wear-related failures in moving mechanical systems has gained tremendous attention due to increased demands for durability, reliability and energy conservation. However, only few materials can meet these requirements at high temperatures. Here, we designed and prepared a Sn-containing Si3N4-based composite, which displayed excellent tribological properties at high temperatures. The results showed that the friction coefficient and wear rate of the composites were reduced to 0.27 and 4.88 × 10?6 mm3 N?1 m?1 in air at 800 °C. The wear mechanism of the sliding pairs at different temperatures was revealed via detailed analyses of the worn surfaces. In addition, the tribo-driven graphitization was detected on the wear surfaces and in the wear debris, and the carbon phase was identified by SEM, TEM, and Raman spectrum.  相似文献   
2.
ZrB2-MeC and ZrB2-19 vol% SiC-MexCy where Me=Cr, Mo, W were obtained by pressureless sintering. The capability to promote densification of ZrB2 and ZrB2-SiC matrices is the highest for WC and lowest for Cr3C2. The interaction between the components results in the formation of new phases, such as MeB (MoB, CrB, WB), a solid solution based on ZrC, and a solid solution based on ZrB2. The addition of Cr3C2 decreases the mechanical properties. On the other hand, the addition of Mo2C or WC to ZrB2-19 vol% SiC composite ceramics leads increased mechanical properties. Long-term oxidation of ceramics at 1500 °C for 50 h showed that, in binary ZrB2-MexCy, a protective oxide scale does not form on the surface thus leading to the destruction of the composite. On the contrary, triple composites showed high oxidation resistance, due to the formation of dense oxide scale on the surface, with ZrB2-SiC-Mo2C displaying the best performance.  相似文献   
3.
4.
闫轩  许涛  曾柄杰 《机械与电子》2020,38(12):14-18
为研究不同工况下轴承预紧力对电主轴轴承动力学的影响规律,基于外轨道控制理论,建立了一种以旋滚比可优化的轴承预紧力动力学模型。通过分析高速状态下滚动体载荷和特征参数动态变化过程,构建综合考虑滚动体滚动、自旋转、陀螺运动和离心力的轴承动力学分析模型,在此基础上,计算旋滚比动态变化结果;研究Jones发现的阈值与旋滚比之间的动态定量映射关系;以轴承滚动体打滑状态为优化目标,使用MATLAB仿真分析不同工况下轴承最佳预紧力。建模分析表明,轴承旋滚比大小可以反映轴承预紧效果,也可实现轴承预紧力动态定量优化。  相似文献   
5.
Rate-distortion optimization (RDO) is conventionally based on the analysis of rate-distortion (R-D) curve to minimize the coding distortion under the coding bits constraint. However, it is necessary to consider the computational complexity in the RDO process. In this paper, we obtain the Confidence LEvel - Computational complexity (CLEC) curves which indicate the characteristics of coding tree units (CTUs). Based on the CLEC curves, a rate-distortion-complexity optimization (RDCO) algorithm is proposed to optimize R-D under given computational complexity and achieve the optimal coding performance for x265. Experimental results demonstrate that the proposed algorithm can achieve a wide range of encoding speed under a given quantization parameter (QP) whereas the original x265 can only achieve a few fixed encoding speeds, and the proposed algorithm can reduce the BD-rate and increase the BD-PSNR by 6.59% and 0.13 dB on average under the same requirements of encoding speeds as the original x265.  相似文献   
6.
《Ceramics International》2020,46(8):11617-11621
Lead-free Na0.5K0.5NbO3 (KNN) piezoelectric ceramics is regarded as a potential candidate for PZT material, while high performance is difficult to be obtained due to its poor sinterability and non-stoichiometric component. In this work, oscillatory pressure-assisted hot pressing (OPAHP) is utilized to fabricate KNN ceramics with high density. The KNN ceramics sintered at 860 °C exhibits superior performance with piezoelectric parameter (d33) of 142 pC/N, electromechanical coupling factors (kp) of 0.41, and relative permittivity (εT33/ε0) of 472–620. Additionally, hardness and flexural strength are measured as 3.55 GPa and 99.13 MPa, respectively. This work indicates that OPAHP technique is effective for fabricating KNN piezoelectric ceramics with high performance.  相似文献   
7.
The coarse grain heat affected zone (CG-HAZ) of welds produced in a quenched and tempered 42CrMo4 steel was simulated by means of a laboratory heat treatment consisting in austenitizing at 1200 °C for 20 min, oil quenching and finally applying a post weld heat treatment at 700 °C for 2 h (similar to the tempering treatment previously applied to the base steel). A tempered martensite microstructure with a prior austenite grain size of 150 μm and a hardness of 230 HV, similar to the aforementioned CG-HAZ weld region, was produced. The effect of the prior austenite grain size on the hydrogen embrittlement (HE) behaviour of the steel was studied comparing this coarse-grained microstructure with that of the fine-grained base steel, with a prior austenite grain size of 20 μm.The specimens used in this study were charged with hydrogen gas in a reactor at 19.5 MPa and 450 °C for 21 h. Cylindrical specimens were used to determine hydrogen uptake and hydrogen desorption behaviour. Smooth and notched tensile specimens tested under different displacement rates were also used to evaluate HE.Embrittlement indexes, EI, were generally quite low in the case of hydrogen pre-charged tensile tests performed on smooth tensile specimens. However, very significant embrittlement indexes were obtained with notched tensile specimens. It was observed that these indexes always increase as the applied displacement rate decreases. Moreover, hydrogen embrittlement indexes also increase with increasing prior austenite grain size. In fact, the embrittlement index related to the reduction in area, EI(RA), reached values of over 20% and 50% for the fine and coarse grain size steels, respectively, when tested under the lowest displacement rates (0.002 mm/min).A comprehensive fractographic analysis was performed and the main operative failure micromechanisms due to the presence of internal hydrogen were determined at different test displacement rates. While microvoids coalescence (MVC) was found to be the typical ductile failure micromechanism in the absence of hydrogen in the two steels, brittle decohesion mechanisms (carbide-matrix interface decohesion, CMD, and martensitic lath interface decohesion, MLD) were observed under internal hydrogen. Intergranular fracture (IG) was also found to be operative in the case of the coarse-grained steel tested under the lowest displacement rate, in which hydrogen accumulation in the process zone ahead of the notch tip is maximal.  相似文献   
8.
The present paper tests experimentally the through-thickness electrical conductivity of carbon fiber-reinforced polymer (CFRP) composites laminates for aircraft applications. Two types of samples were prepared: Type A samples with carbon nanotubes (CNTs) and Type B samples without CNTs. During the electrical experiments, electrical currents of several mA were injected through the specimens. Electrical resistance was monitored simultaneously in order to deduce the changes in the through-the-thickness electrical conductivity caused by the addition of CNTs. Improvement of electrical conduction by two orders of magnitude was achieved through the addition of 1 wt% carbon nanotubes as compared to classic CFRP without CNTs. For moisture saturated samples, the influence of moisture absorption on such measures was found to be negligible.  相似文献   
9.
《Ceramics International》2020,46(12):19752-19757
In this study, plate-like Na0.5Bi0.5TiO3 (BNT) templates with perovskite structure were obtained by two-step molten salt synthesis (MSS) method at a low temperature. Firstly, Bi4Ti3O12 precursors were synthesized at 1030 °C in NaCl–KCl molten salt. Secondly, plate-like Na0.5Bi0.5TiO3 particles with perovskite structure were obtained from plate-like layer-structured ferroelectric ceramic of Bi4Ti3O12 by topochemical microcrystal conversion method. Result showed that excessive Na2CO3 was beneficial to facilitate the low temperature synthesis. In the case of an excess of 30 mol% Na2CO3, plate-like BNT particles could be obtained by synthesis at temperatures ranging from 760 °C to 800 °C, which indicated a flexible processing route. Also, it has been observed that plate-like BNT particles show a high aspect ratio with 1 μm in thickness and 10–20 μm in length. These Na0.5Bi0.5TiO3 plate-like particles can be good candidates for the preparation of lead-free BNT-based piezoelectric ceramics with oriented grain microstructure.  相似文献   
10.
Transparent ceramics with good electrical performance have recently drawn broad interest as promising multifunctional materials. Here, we report that a superior transmittance (T = 75 % at 2000 nm) and good piezoelectricity (d33 ∼ 150 pC/N) can be simultaneously realized in 0.93K0.5Na0.5NbO3-0.07SrZrO3 (KNN-SZ) ceramics by Li2O regulation. The effect of Li2O regulation has two parts: first, the presence of Li2O facilitates the grain growth of KNN-SZ, considering that it melts at a relatively low temperature as a proper sintering aid; second, the introduced Li+ causes local lattice distortion, resulting in the coexistence of orthogonal and tetragonal (O–T) phases. The enlarged grains reduce the light scattering by grain boundaries for a higher optical transmittance; meanwhile, large grains stand as a prerequisite for the macroscopic domain structure favoured for decent piezoelectricity, which could also be partly caused by the coexistence of O–T phases. We believe that these findings might make KNN-based ceramics a preferable candidate for optoelectronic devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号